Up-regulation of miR-370-3p restores glioblastoma multiforme sensitivity to temozolomide by influencing MGMT expression
نویسندگان
چکیده
MicroRNAs (miRNA) are believed to play an important role in glioblastoma multiforme (GBM)chemotherapy. Our study aims to investigate potential miRNA biomarkers in GBM. Sixty GBM patients, which were given temozolomide (TMZ) chemotherapy and recurrent radiotherapy, were recruited. miRNA array was performed in cancerous and in paired normal tissues. Microarray results were further validated by a quantitative real-time PCR in selected tissues and GBM cell lines. TMZ resistance cells were developed and cell proliferation along with colony formation assays was determined. Our study employed H2AX formation and flow cytometry to analyse the role of miRNA in DNA damage and apoptosis. Our study illustrated 16 miRNA in which 9 were up-regulated and 7 down-regulated. and their differential expression were demonstrated in a recurrent GBM tissue. Among them, miRNA-370-3p demonstrated the highest level of down- regulation in tissues and in TMZ resistance cells. miRNA-370-3p mimic increased its expression and sensitivity of GBM cells to TMZ by suppressing the self-reparative ability of tumour cell DNA. O(6)-methylguanine-DNA methyltransferase (MGMT) was identified as the direct target gene of miR-370-3p, and it was found to be inversely correlated with miR-370-3p expression in tissue samples obtained. Thus, our study demonstrated a critical clinical role of an up-regulated miR-370-3p expression in glioblastoma multiforme chemotherapy sensitivity.
منابع مشابه
miR-221/222 Target the DNA Methyltransferase MGMT in Glioma Cells
Glioblastoma multiforme (GBM) is one of the most deadly types of cancer. To date, the best clinical approach for treatment is based on administration of temozolomide (TMZ) in combination with radiotherapy. Much evidence suggests that the intracellular level of the alkylating enzyme O(6)-methylguanine-DNA methyltransferase (MGMT) impacts response to TMZ in GBM patients. MGMT expression is regula...
متن کاملMicroRNA-141-3p promotes glioma cell growth and temozolomide resistance by directly targeting p53
Glioblastoma multiforme is the most common primary malignancy in the brain and confers a uniformly poor prognosis. MicroRNAs have been shown to activate or inhibit tumorigenesis. Abnormalities in the p53 signaling pathway are found in various cancers and correlate with tumor formation. We examined the expression of microRNA-141-3p (miR-141-3p) in glioma of different grades by analysis of expres...
متن کاملmiRNA array screening reveals cooperative MGMT-regulation between miR-181d-5p and miR-409-3p in glioblastoma
The levels of expression of O6-methylguanine-DNA methyltransferase (MGMT) are relevant in predicting the response to the alkylating chemotherapy in patients affected by glioblastoma. MGMT promoter methylation and the published MGMT regulating microRNAs (miRNAs) do not completely explain the expression pattern of MGMT in clinical glioblastoma specimens. Here we used a genome-wide microarray-base...
متن کاملMicroRNA-101 reverses temozolomide resistance by inhibition of GSK3β in glioblastoma
Glioblastoma multiforme (GBM) is a chemotherapy-resistant brain tumor with limited treatment options. Temozolomide (TMZ), an alkylating agent, is a front-line chemotherapeutic drug currently employed in GBM. Although it is currently the most promising chemotherapy for GBM, resistance to TMZ is also common and accounts for many treatment failures. Therefore, understanding the underlying mechanis...
متن کاملA genome-wide miRNA screen revealed miR-603 as a MGMT-regulating miRNA in glioblastomas
MGMT expression is a critical determinant for therapeutic resistance to DNA alkylating agents. We previously demonstrated that MGMT expression is post-transcriptionally regulated by miR-181d and other miRNAs. Here, we performed a genome-wide screen to identify MGMT regulating miRNAs. Candidate miRNAs were further tested for inverse correlation with MGMT expression in clinical specimens. We iden...
متن کامل